Solved Assignments
AIOU |
Math (Course code = 248) Assignment No 2
Semester
spring 2014
Q:1
3A-3B=3(A-B)
L.H.S
3A-3B
3[2 3]-3[1 7]
[1 5] [4 6]
[6 9]]-[3 21]
[3 15] [12 18]
[6-3 9-21]
[3-12 15-18]
[3 -12]
[-9 -3] Ans
R.H.S
3(A-B)
3[2 3]- [1 7]
[1 5] [4 6]
3[2-1 3-7]
[1-4 5-6]
3[1 -4]
[-3 -1]
[3 -12]
[-9 -3] Ans
so L.H.S =R.H.S
(B)
[w x] = [2 1] - [3 0]
[y z] [6 -3] [-1 5]
[w x] = [2-3 1-0]
[y z] [6-(-1) -3-5]
[w x] = [-1 1]
[y z] [7 -8]
w= -1
x= 1
y= 7
z= -8
(c)
[1 -3] [1 -1 ]
[1 2] [o -2 ]
[(1x1)+(-3x0) (1x-1)+(-3x-2)]
[(1x1)+(2x0) (1x-1)+(2x-2)]
[1-0 -1+6]
[1+0 -1-4]
[1 5]
[1 -5] Ans
Q:2
(A)
Sol:
M=[1 2]
[3 4]
1M1
adj M = adj [1 2]
[3 4]
= [4 -2]
[-3 1]
1M1 = 4x1 -(-2_(-3)_
= 4-(6)
= -2
Putting values in
1M1
[-3 1]
-2
M = [4/-2 -2/-2 ]
[-3/-2 1/-2 ]
= -2 1
3/2 -1/2
[3 4] [ 3/2 -1/2]
= 1x-2 + 2x3/2 1x1+2x-1/2
3x-2 + 4x3/2 3x1+4x-1/2
= -2+3 1-1
-6+6 3-2
= 1 0
0 1 Ans
R.H.S
M-1M = ?
M = [1 2]
[3 4]
M-1M = [-2 1 ] [1 2]
[3/2 -1/2 ] [3 4]
= -2x1 + 1x3 -2x2 + 1x-4
3/2 x 2 +-1/2x-3 3/2x2 + -1/2x4
= -2+3 1-1
-6+6 3-2
= 1 0
0 1 Ans
so L.H.S = R.H.S
(B)
L.H.S
Q:1
(A)
P(1)
Q:1
3A-3B=3(A-B)
L.H.S
3A-3B
3[2 3]-3[1 7]
[1 5] [4 6]
[6 9]]-[3 21]
[3 15] [12 18]
[6-3 9-21]
[3-12 15-18]
[3 -12]
[-9 -3] Ans
R.H.S
3(A-B)
3[2 3]- [1 7]
[1 5] [4 6]
3[2-1 3-7]
[1-4 5-6]
3[1 -4]
[-3 -1]
[3 -12]
[-9 -3] Ans
so L.H.S =R.H.S
(B)
[w x] = [2 1] - [3 0]
[y z] [6 -3] [-1 5]
[w x] = [2-3 1-0]
[y z] [6-(-1) -3-5]
[w x] = [-1 1]
[y z] [7 -8]
w= -1
x= 1
y= 7
z= -8
(c)
[1 -3] [1 -1 ]
[1 2] [o -2 ]
[(1x1)+(-3x0) (1x-1)+(-3x-2)]
[(1x1)+(2x0) (1x-1)+(2x-2)]
[1-0 -1+6]
[1+0 -1-4]
[1 5]
[1 -5] Ans
Q:2
(A)
Sol:
MM-1
M=[1 2]
[3 4]
M-1
= adjM
1M1
adj M = adj [1 2]
[3 4]
= [4 -2]
[-3 1]
1M1 = 4x1 -(-2_(-3)_
= 4-(6)
= -2
Putting values in
M-1= adjM
1M1
M-1
= [4 -2]
[-3 1]
-2
M = [4/-2 -2/-2 ]
[-3/-2 1/-2 ]
= -2 1
3/2 -1/2
MM-1= [1 2] [ -2 1]
[3 4] [ 3/2 -1/2]
= 1x-2 + 2x3/2 1x1+2x-1/2
3x-2 + 4x3/2 3x1+4x-1/2
= -2+3 1-1
-6+6 3-2
= 1 0
0 1 Ans
R.H.S
M-1M = ?
M-1
= -2 1
3/2 -1/2M = [1 2]
[3 4]
M-1M = [-2 1 ] [1 2]
[3/2 -1/2 ] [3 4]
= -2x1 + 1x3 -2x2 + 1x-4
3/2 x 2 +-1/2x-3 3/2x2 + -1/2x4
= -2+3 1-1
-6+6 3-2
= 1 0
0 1 Ans
so L.H.S = R.H.S
(B)
L.H.S
AB-1= ?
AB =[ 5 2][4 2]
[2 1][3 -1]
= 5 x 4 + 2 x 3 5x2 + 2 x - 1
2 x 4 + 1 x 3 2 x 2 + 1 x -1
= 20+6 10-2
8+3 4-1
= 26 8
11 3
AB-1 = adj AB
|AB|
= 3 -8
-11 26
|AB| = 26 x 3 - (-11 x-8)
= 78 -88
= -10
so
AB-1 = adj AB
|AB|
= 3 -8
-11 26
-10
= 1/-10 [3 -8 ]
[-11 26]
R.H.S
[2 1][3 -1]
= 5 x 4 + 2 x 3 5x2 + 2 x - 1
2 x 4 + 1 x 3 2 x 2 + 1 x -1
= 20+6 10-2
8+3 4-1
= 26 8
11 3
AB-1 = adj AB
|AB|
= 3 -8
-11 26
|AB| = 26 x 3 - (-11 x-8)
= 78 -88
= -10
so
AB-1 = adj AB
|AB|
= 3 -8
-11 26
-10
= 1/-10 [3 -8 ]
[-11 26]
R.H.S
A-1B-1 = ?
A-1 = adj A
|A|
adj A = 1 -2
- 2 5
|A| = 5 x 1 - 2 x 2
= 5 - 4
= 1
A-1 = adj A
|A|
= 1 -2
- 2 5
1
B-1 = adjB
|B|
adj B = -1 2
3 4
|B| = 4 x -1 - 3 x 2
= -4 - 6
= -10
B-1 = adjB
|B|
= -1 2
3 4
-10
= 1/-10 [-1 -2]
[ -3 4]
= 1/-10 [-1 -2] [1 -2]
[-3 4] [- 2 5 ]
= [ -1 x 1+ -2 x-2 -1 x -2 +(-2x5)]
[-3 x 1 +4 x -2 -3x-2 + 4x5 ]
= 1/-10 [-1+4 2-10 ]
[ -3-2 6+20]
= [3 -8 ]
[-11 26]
so
LHS=RHS
(c)
Find the solution set
2x+y=1
5x+3y=2
we will find it by cramer method
Write it in matrix form
|2 1| |x| = |1|
|5 3| |y| = |2|
AX=B
A= |2 1|
|5 3|
|A| = |2 1|
|5 3|
= 6-5=1# 0
|D1| = |1 1| = 3-2=1
= |2 3|
|D2| =|2 1| = 4-5=-1
= |5 2|
x = |D1|
|A|
= 1
y = |D2|
|A|
= -1
x = 1
y = -1
= {1 , -1}
Q:3
(A)
suppose first angle is = X0
second angle= 1000 - X0
suppliment of X0 =1800 -X0
suppliment of 1000 -X0 = 1800- (1000 -X0)
= 1800 -1000 -x
(1800 - 1000 + X0 ) -(1800 - X0) = 1000
1800 - 1000 + X0 - 1800 - X0 = 1000
2X0 -1000 = 1000
2X0 = 1000 + 1000
X0 = 200/2
X0 = 1000
First angle = 1000
second angle = 1000 - 1000 = 0
(B)
Sum of angles of triangle = 1800
Sum of angles of triangle (ABC)=x+90+30
= x+120
x+120 = 1800
x = 1800 -120
x = 60 Ans
(c)
largest side of rectangle = 7cm
ratio in large sides = 7 : 1
21 3
so
1/3 = 6/a = 5/b = 4/c =2/d
6/a=1/3
a=6x3 =18cm
5/b=1/3
b= 5x3 15 cm
4/c = 1/3
c= 4x3 =12
2/d=1/3
d=2x3 = 6cm
a,b,c,d are sides of rectangle
Q:4
Area of field = 2.5 hectar
25000 square meter
Suppose lenght of field =3x
width of field =2x
Area = (3x) (2x)
= 6X2
6X2 = 25000
X2 = 25000/6
= 4166.67
By taking sqaur root
x = 64.55
3x = 3x64.55=193.65
2x=2x64.55= 129.10
2(3x+2x) =2(193.65 +129.10)
=2(322.75)
=645.50 meter
(B)
lenght = 4m
width = 3m
hight = 2m
volume = lenght x width x hight
= 4x3x2
= 24
(C)
Radius of square= 14cm
Area of square= 14x14/2
=98 Cm2
According to fisa gourse
X2+X2 = 14x14
2X2 = 14x14
= 14x14/2
area of square = X2
=98 Cm2
Q:5
(b)
[-3 x 1 +4 x -2 -3x-2 + 4x5 ]
= 1/-10 [-1+4 2-10 ]
[ -3-2 6+20]
= [3 -8 ]
[-11 26]
so
LHS=RHS
(c)
Find the solution set
2x+y=1
5x+3y=2
we will find it by cramer method
Write it in matrix form
|2 1| |x| = |1|
|5 3| |y| = |2|
AX=B
A= |2 1|
|5 3|
|A| = |2 1|
|5 3|
= 6-5=1# 0
|D1| = |1 1| = 3-2=1
= |2 3|
|D2| =|2 1| = 4-5=-1
= |5 2|
x = |D1|
|A|
= 1
y = |D2|
|A|
= -1
x = 1
y = -1
= {1 , -1}
Q:3
(A)
suppose first angle is = X0
second angle= 1000 - X0
suppliment of X0 =1800 -X0
suppliment of 1000 -X0 = 1800- (1000 -X0)
= 1800 -1000 -x
(1800 - 1000 + X0 ) -(1800 - X0) = 1000
1800 - 1000 + X0 - 1800 - X0 = 1000
2X0 -1000 = 1000
2X0 = 1000 + 1000
X0 = 200/2
X0 = 1000
First angle = 1000
second angle = 1000 - 1000 = 0
(B)
Sum of angles of triangle = 1800
Sum of angles of triangle (ABC)=x+90+30
= x+120
x+120 = 1800
x = 1800 -120
x = 60 Ans
(c)
largest side of rectangle = 7cm
ratio in large sides = 7 : 1
21 3
so
1/3 = 6/a = 5/b = 4/c =2/d
6/a=1/3
a=6x3 =18cm
5/b=1/3
b= 5x3 15 cm
4/c = 1/3
c= 4x3 =12
2/d=1/3
d=2x3 = 6cm
a,b,c,d are sides of rectangle
Q:4
Area of field = 2.5 hectar
25000 square meter
Suppose lenght of field =3x
width of field =2x
Area = (3x) (2x)
= 6X2
6X2 = 25000
X2 = 25000/6
= 4166.67
By taking sqaur root
x = 64.55
3x = 3x64.55=193.65
2x=2x64.55= 129.10
2(3x+2x) =2(193.65 +129.10)
=2(322.75)
=645.50 meter
(B)
lenght = 4m
width = 3m
hight = 2m
volume = lenght x width x hight
= 4x3x2
= 24
(C)
Radius of square= 14cm
Area of square= 14x14/2
=98 Cm2
According to fisa gourse
X2+X2 = 14x14
2X2 = 14x14
= 14x14/2
area of square = X2
=98 Cm2
Q:5
(b)
Magnitude
of first side = 2ab
Magnitude
of second side = a - b
Magnitude
of chord = ?
Magnitude
of chord = (2ab)2 + (a2 + b2 )
= √ (a2 + b2 )+ (2ab)2
= √ a4 + b4 - 2a2b2 +4a2b2
= √ a4 + b4 +(2a2b2 )2
= √ (a2 + b2 )2
= (a2 + b2) Ans
Math(code = 248) Assighnment No 1
semester spring 2014Q:1
(A)
P(1)
P(x) = x2
-5x2 + 6
X + 1
= (1)2 – 5(1)2 + 6
1+1
= 1 – 5 + 6
2
= 1 Ans
= 1 Ans
P (5)= = x -5x2
+ 6
X + 1
= (5)2 – 5(5)2 + 6
5 + 1
= 25 – 25 + 6
6
= 1 Ans
= ( 1 , 1 ) Ans
(B)
Sol:
2X2 - 5x -12 x 6X2 + 5x - 4
4x + 4x - 3 2x -7x -4
2X2 - 8x + 3x - 12 x 6X2 + 8x -3x -4
4x + 6x - 2x - 3 2x - 8x + x - 4
2x(x-4) +3 (x-4) x 2x(3x+4) -1 (3x+4)
2x(2x+3)-1(2x+3) 2x(x-4) + 1(x-4)
(2x+3) (x-4) x (2x-1) (3x+4)
(2x-1) (2x+3) x (2x+1) (x-4)
= 3x +4 Ans
2x+1
(ii)
= ( 1 , 1 ) Ans
(B)
Sol:
2X2 - 5x -12 x 6X2 + 5x - 4
4x + 4x - 3 2x -7x -4
2X2 - 8x + 3x - 12 x 6X2 + 8x -3x -4
4x + 6x - 2x - 3 2x - 8x + x - 4
2x(x-4) +3 (x-4) x 2x(3x+4) -1 (3x+4)
2x(2x+3)-1(2x+3) 2x(x-4) + 1(x-4)
(2x+3) (x-4) x (2x-1) (3x+4)
(2x-1) (2x+3) x (2x+1) (x-4)
= 3x +4 Ans
2x+1
(ii)
= (x+1)2 - (x2+1)
(x2+1) (x2+1)
= (x+1)2 - (x2+1)
x2+1
= x2 + 2x+ 1 - x2 -1
x2 + 1
= 2x
x2 +1 Ans
x2 + 1
= 2x
x2 +1 Ans
Post a Comment